现代神经影像学技术,例如扩散张量成像(DTI)和功能性磁共振成像(fMRI),使我们能够将人脑建模为脑网络或连接组。捕获大脑网络的结构信息和分层模式对于理解大脑功能和疾病状态至关重要。最近,图形神经网络(GNN)的有前途的网络表示能力促使许多基于GNN的方法用于脑网络分析。具体而言,这些方法应用功能聚合和全局池来将大脑网络实例转换为有意义的低维表示,用于下游大脑网络分析任务。但是,现有的基于GNN的方法通常忽略了不同受试者的大脑网络可能需要各种聚合迭代,并将GNN与固定数量的层一起学习所有大脑网络。因此,如何完全释放GNN促进大脑网络分析的潜力仍然是不平凡的。为了解决这个问题,我们提出了一个新颖的大脑网络表示框架,即BN-GNN,该框架搜索每个大脑网络的最佳GNN体系结构。具体而言,BN-GNN使用深度加固学习(DRL)来训练元派利,以自动确定给定脑网络所需的最佳特征聚合数(反映在GNN层的数量中)。在八个现实世界大脑网络数据集上进行的广泛实验表明,我们提出的BN-GNN提高了传统GNN在不同大脑网络分析任务上的性能。
translated by 谷歌翻译
无监督的域适应(UDA)显示出近年来工作条件下的轴承故障诊断的显着结果。但是,大多数UDA方法都不考虑数据的几何结构。此外,通常应用全局域适应技术,这忽略了子域之间的关系。本文通过呈现新的深亚域适应图卷积神经网络(DSAGCN)来解决提到的挑战,具有两个关键特性:首先,采用图形卷积神经网络(GCNN)来模拟数据结构。二,对抗域适应和局部最大平均差异(LMMD)方法同时应用,以对准子域的分布并降低相关子域和全局域之间的结构差异。 CWRU和Paderborn轴承数据集用于验证DSAGCN方法的比较模型之间的效率和优越性。实验结果表明,将结构化子域与域适应方法对准,以获得无监督故障诊断的准确数据驱动模型。
translated by 谷歌翻译
Performance metrics-driven context caching has a profound impact on throughput and response time in distributed context management systems for real-time context queries. This paper proposes a reinforcement learning based approach to adaptively cache context with the objective of minimizing the cost incurred by context management systems in responding to context queries. Our novel algorithms enable context queries and sub-queries to reuse and repurpose cached context in an efficient manner. This approach is distinctive to traditional data caching approaches by three main features. First, we make selective context cache admissions using no prior knowledge of the context, or the context query load. Secondly, we develop and incorporate innovative heuristic models to calculate expected performance of caching an item when making the decisions. Thirdly, our strategy defines a time-aware continuous cache action space. We present two reinforcement learning agents, a value function estimating actor-critic agent and a policy search agent using deep deterministic policy gradient method. The paper also proposes adaptive policies such as eviction and cache memory scaling to complement our objective. Our method is evaluated using a synthetically generated load of context sub-queries and a synthetic data set inspired from real world data and query samples. We further investigate optimal adaptive caching configurations under different settings. This paper presents, compares, and discusses our findings that the proposed selective caching methods reach short- and long-term cost- and performance-efficiency. The paper demonstrates that the proposed methods outperform other modes of context management such as redirector mode, and database mode, and cache all policy by up to 60% in cost efficiency.
translated by 谷歌翻译
It does not matter whether it is a job interview with Tech Giants, Wall Street firms, or a small startup; all candidates want to demonstrate their best selves or even present themselves better than they really are. Meanwhile, recruiters want to know the candidates' authentic selves and detect soft skills that prove an expert candidate would be a great fit in any company. Recruiters worldwide usually struggle to find employees with the highest level of these skills. Digital footprints can assist recruiters in this process by providing candidates' unique set of online activities, while social media delivers one of the largest digital footprints to track people. In this study, for the first time, we show that a wide range of behavioral competencies consisting of 16 in-demand soft skills can be automatically predicted from Instagram profiles based on the following lists and other quantitative features using machine learning algorithms. We also provide predictions on Big Five personality traits. Models were built based on a sample of 400 Iranian volunteer users who answered an online questionnaire and provided their Instagram usernames which allowed us to crawl the public profiles. We applied several machine learning algorithms to the uniformed data. Deep learning models mostly outperformed by demonstrating 70% and 69% average Accuracy in two-level and three-level classifications respectively. Creating a large pool of people with the highest level of soft skills, and making more accurate evaluations of job candidates is possible with the application of AI on social media user-generated data.
translated by 谷歌翻译
Vision transformers (ViTs) are quickly becoming the de-facto architecture for computer vision, yet we understand very little about why they work and what they learn. While existing studies visually analyze the mechanisms of convolutional neural networks, an analogous exploration of ViTs remains challenging. In this paper, we first address the obstacles to performing visualizations on ViTs. Assisted by these solutions, we observe that neurons in ViTs trained with language model supervision (e.g., CLIP) are activated by semantic concepts rather than visual features. We also explore the underlying differences between ViTs and CNNs, and we find that transformers detect image background features, just like their convolutional counterparts, but their predictions depend far less on high-frequency information. On the other hand, both architecture types behave similarly in the way features progress from abstract patterns in early layers to concrete objects in late layers. In addition, we show that ViTs maintain spatial information in all layers except the final layer. In contrast to previous works, we show that the last layer most likely discards the spatial information and behaves as a learned global pooling operation. Finally, we conduct large-scale visualizations on a wide range of ViT variants, including DeiT, CoaT, ConViT, PiT, Swin, and Twin, to validate the effectiveness of our method.
translated by 谷歌翻译
Over the years, Machine Learning models have been successfully employed on neuroimaging data for accurately predicting brain age. Deviations from the healthy brain aging pattern are associated to the accelerated brain aging and brain abnormalities. Hence, efficient and accurate diagnosis techniques are required for eliciting accurate brain age estimations. Several contributions have been reported in the past for this purpose, resorting to different data-driven modeling methods. Recently, deep neural networks (also referred to as deep learning) have become prevalent in manifold neuroimaging studies, including brain age estimation. In this review, we offer a comprehensive analysis of the literature related to the adoption of deep learning for brain age estimation with neuroimaging data. We detail and analyze different deep learning architectures used for this application, pausing at research works published to date quantitatively exploring their application. We also examine different brain age estimation frameworks, comparatively exposing their advantages and weaknesses. Finally, the review concludes with an outlook towards future directions that should be followed by prospective studies. The ultimate goal of this paper is to establish a common and informed reference for newcomers and experienced researchers willing to approach brain age estimation by using deep learning models
translated by 谷歌翻译
Machine learning algorithms have revolutionized different fields, including natural language processing, computer vision, signal processing, and medical data processing. Despite the excellent capabilities of machine learning algorithms in various tasks and areas, the performance of these models mainly deteriorates when there is a shift in the test and training data distributions. This gap occurs due to the violation of the fundamental assumption that the training and test data are independent and identically distributed (i.i.d). In real-world scenarios where collecting data from all possible domains for training is costly and even impossible, the i.i.d assumption can hardly be satisfied. The problem is even more severe in the case of medical images and signals because it requires either expensive equipment or a meticulous experimentation setup to collect data, even for a single domain. Additionally, the decrease in performance may have severe consequences in the analysis of medical records. As a result of such problems, the ability to generalize and adapt under distribution shifts (domain generalization (DG) and domain adaptation (DA)) is essential for the analysis of medical data. This paper provides the first systematic review of DG and DA on functional brain signals to fill the gap of the absence of a comprehensive study in this era. We provide detailed explanations and categorizations of datasets, approaches, and architectures used in DG and DA on functional brain images. We further address the attention-worthy future tracks in this field.
translated by 谷歌翻译
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems. In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users. DR has a widely recognized potential for improving power grid stability and reliability, while at the same time reducing end-users energy bills. However, the conventional DR techniques come with several shortcomings, such as the inability to handle operational uncertainties while incurring end-user disutility, which prevents widespread adoption in real-world applications. The proposed framework addresses these shortcomings by implementing DR and DEM based on real-time pricing strategy that is achieved using deep reinforcement learning. Furthermore, this framework enables the power grid service provider to leverage distributed energy resources (i.e., PV rooftop panels and battery storage) as dispatchable assets to support the smart grid during peak hours, thus achieving management of distributed energy resources. Simulation results based on the Deep Q-Network (DQN) demonstrate significant improvements of the 24-hour accumulative profit for both prosumers and the power grid service provider, as well as major reductions in the utilization of the power grid reserve generators.
translated by 谷歌翻译
Recently, there has been a significant amount of interest in satellite telemetry anomaly detection (AD) using neural networks (NN). For AD purposes, the current approaches focus on either forecasting or reconstruction of the time series, and they cannot measure the level of reliability or the probability of correct detection. Although the Bayesian neural network (BNN)-based approaches are well known for time series uncertainty estimation, they are computationally intractable. In this paper, we present a tractable approximation for BNN based on the Monte Carlo (MC) dropout method for capturing the uncertainty in the satellite telemetry time series, without sacrificing accuracy. For time series forecasting, we employ an NN, which consists of several Long Short-Term Memory (LSTM) layers followed by various dense layers. We employ the MC dropout inside each LSTM layer and before the dense layers for uncertainty estimation. With the proposed uncertainty region and by utilizing a post-processing filter, we can effectively capture the anomaly points. Numerical results show that our proposed time series AD approach outperforms the existing methods from both prediction accuracy and AD perspectives.
translated by 谷歌翻译
Causal discovery, the inference of causal relations from data, is a core task of fundamental importance in all scientific domains, and several new machine learning methods for addressing the causal discovery problem have been proposed recently. However, existing machine learning methods for causal discovery typically require that the data used for inference is pooled and available in a centralized location. In many domains of high practical importance, such as in healthcare, data is only available at local data-generating entities (e.g. hospitals in the healthcare context), and cannot be shared across entities due to, among others, privacy and regulatory reasons. In this work, we address the problem of inferring causal structure - in the form of a directed acyclic graph (DAG) - from a distributed data set that contains both observational and interventional data in a privacy-preserving manner by exchanging updates instead of samples. To this end, we introduce a new federated framework, FED-CD, that enables the discovery of global causal structures both when the set of intervened covariates is the same across decentralized entities, and when the set of intervened covariates are potentially disjoint. We perform a comprehensive experimental evaluation on synthetic data that demonstrates that FED-CD enables effective aggregation of decentralized data for causal discovery without direct sample sharing, even when the contributing distributed data sets cover disjoint sets of interventions. Effective methods for causal discovery in distributed data sets could significantly advance scientific discovery and knowledge sharing in important settings, for instance, healthcare, in which sharing of data across local sites is difficult or prohibited.
translated by 谷歌翻译